Step of Proof: gen_hyp_tp
9,38
postcript
pdf
Inference at
*
1
1
4
I
of proof for Lemma
gen
hyp
tp
:
1.
A
: Type
2.
e
:
A
3.
H
:
A
Type
4.
z
:
H
(
e
)
5.
A
Type
6.
e
A
7.
x
:
A
. (
e
=
x
)
Type
z
0
latex
by (\p.
let i = get_int_arg `i` p
in let x = get_term_arg `x` p
in
in let e = get_term_arg `e` p
in let A = get_term_arg `A` p
in
in
AssertAtHyp
inA
i
inA
(
i
mk_exists_term (dv x) A (mk_equal_term A e x))
imk
p)
latex
i
1
: .....assertion..... NILNIL
i1:
x
:
A
. (
e
=
x
)
i
2
:
i2:
4.
x
:
A
. (
e
=
x
)
i2:
5.
z
:
H
(
e
)
i2:
6.
A
Type
i2:
7.
e
A
i2:
8.
x
:
A
. (
e
=
x
)
Type
i2:
z
0
i
.
origin